
Calling Yellowfin Web Services
Calling Java API

Using Pre-built Java Functions
Performing SOAP Calls

Initializing Administration Web Services
Initializing Report Web Services
Storing Yellowfin Session IDs
Code Samples for Administration Services
Code Samples for Report Services

Other Languages
Microsoft .Net Integration
PHP

Yellowfin provides a Java web service API for connecting to the SOAP web services, but it is also possible to connect from practically any other
programming language or environment such as .NET, Ruby and Python.

Calling Java API

The Yellowfin Web Service API contains pre-generated stubs. This can be used directly in applications that are developed in Java, or other languages that
support Java integration, such as Cold Fusion or Lotus Script.

API can be called under Yellowfin Tomcat using JSP. The code samples can be found in the internally yellowfin/development/examples/webservices
folder, once Yellowfin is installed. All you need to do is to copy the JSP files into the folder and adjust the host, port Yellowfin/appserver/webapps/ROOT
number, and user details in these files according to your environment. We recommend ensuring that you can achieve what you want using this method
prior to replicating this with other languages or environments.

You can still call web services , that is outside of Yellowfin Tomcat. To do so, you will need:externally

 yfws-<date>.jar which can be found in the folder in the Yellowfin directory. development/lib

Apache Axis: Refer to for more information on this.https://axis.apache.org/axis/

A full object definition can be found at Yellowfin/development/doc/webservices/Javadoc/index.html

There are two ways of calling the Yellowfin Web Service API: via pre-built Java functions or by performing SOAP calls. Choosing a method is largely
dependant on your application environment. If you have a Java environment, the recommended method would be to use pre-built Java functions,
otherwise you can perform SOAP calls manually.

Using Pre-built Java Functions
You can use pre-built Java functions to call Yellowfin API. This makes development a little bit easier as you are using pre-built functions, rather than
configuring each request manually.

Performing SOAP Calls

You can perform direct SOAP calls using Java generated stubs off Yellowfin WSDL.

You need to have a Yellowfin user with role functionality to perform web services calls. Click to learn how that is done.here

Do not forget to get a new file after a Yellowfin upgrade (you need to download a corresponding yfws-xxx.jar file from the yfws-xxx.jar
Yellowfin website).

The code samples regarding this method can be found in the folder. See the jsp files with ‘api’ in their development/examples/webservices
names. A good starting point is copying files with ‘mobile’ in their names, into the Yellowfin ROOT folder and exploring.

https://axis.apache.org/axis/
https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=20710416

All the code samples in the and sections are explained using SOAP calls in Java. All the web service examples Administration Service Report Service
included here are explained assuming that you will call Yellowfin API from a Yellowfin Tomcat server (that means you use JSP and all your files go to Yello

 folder). Using languages other than Java will not bring much complexity to the code.wfin/appserver/webapps/ROOT

Initializing Administration Web Services

Use this command to initialize the Administration web services:

AdministrationServiceService s_adm = new AdministrationServiceServiceLocator(<host>,<port>,<ServicePath>,
<ssl>);

AdministrationServiceSoapBindingStub adminService = (AdministrationServiceSoapBindingStub) s_adm.
getAdministrationService();

Initializing Report Web Services

Use this command to initialize the Report web services:

ReportServiceService s_rpt = new ReportServiceServiceLocator(<host>, <port>, <ServicePath>, <ssl>);

ReportServiceSoapBindingStub reportService = (ReportServiceSoapBindingStub) s_rpt.getReportService();

The primary objects included in these parameters are (covered in detail in the section):Administration Object Definition

AdministrationServiceRequest
AdministrationServiceResponse

Storing Yellowfin Session IDs

Every web service response retrieves a Yellowfin session ID. Each time a call is made without specifying a session ID, Yellowfin opens a new session.
This is not suitable for some cases (for instance, if trying to pass dashboard filters to dashboard reports, all the reports must be called within the same
Yellowfin session) as there may be a memory issue with too many sessions being opened. To overcome this problem, you could store the response
parameter, sessionId, and pass it to the next calls:

String savedSessionID = ssr.getSessionId();

...

AdministrationServiceRequest sr = new AdministrationServiceRequest();
sr.setSessionId(savedSessionID);

Code Samples for Administration Services

Assuming you have Yellowfin running on http port 8080 with SSL disabled, see the following example to initialize an Administration service:

AdministrationServiceService s_adm = new AdministrationServiceServiceLocator("localhost",8080,"/services
/AdministrationService", false);

AdministrationServiceSoapBindingStub adminService = (AdministrationServiceSoapBindingStub) s_adm.
getAdministrationService();

Once you configure the request, you can call Yellowfin using the remoteAdministrationCall() function of the AdministrationServiceSoapBindingStub object:

https://wiki.yellowfinbi.com/display/user80/Administration+Services
https://wiki.yellowfinbi.com/display/user80/Report+Services
https://wiki.yellowfinbi.com/display/user80/Administration+Object+Definitions

AdministrationServiceResponse rs = adminService.remoteAdministrationCall(rsr);

Code Samples for Report Services

Assuming you have Yellowfin running on 8080 http port with SSL disabled, see the following example to initialize a Report service:

ReportServiceService s_rpt = new ReportServiceServiceLocator("localhost",8080,"/services/ReportService",
false);

ReportServiceSoapBindingStub reportService = (ReportServiceSoapBindingStub) s_rpt.getReportService();

Once you configure the request, you can call Yellowfin using the remoteReportCall() function of the ReportServiceSoapBindingStub object:

ReportServiceResponse rs = reportService.remoteReportCall(rsr);

Other Languages

When developing against Yellowfin web services, it is possible to generate functional stubs against the WSDL definitions. These definitions can be found
at http://<yellowfin-server>:<port>/services, for instance, .http://localhost:8080/services

The functional stubs will allow developers to make standard function calls in their native programming language which will directly communicate with the
Web Services provided by Yellowfin. The process of creating function stubs should also generate any objects required by the web service.

Microsoft .Net Integration

With .NET, we recommend generating stubs from JAX web services. You should be able to hit the JAX web services at: http://<yellowfin-host>/webservices
/Hello. It will display a page with WSDL URLs:

Connect your clients to the listed WSDL URLs.

PHP

There may be issues where data types between Java and .Net are not compatible. For example, Integer types that send through zero, rather
than null. You might need to manually change the References.cs file to update the datatypes.

You can use Axis generated WSDL (http://<yellowfin-server>:<port>/services) with PHP.

Previous topic: Enable web services

https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=20710416

	Calling Yellowfin Web Services

