
1.
2.
3.

4.

Plugin Development Basics

Overview
Tools to develop and debug your plugins

Install Java 8 JDK (or higher) on your development system
Install Yellowfin for development work
Create a project that outputs to your Yellowfin folder
Create a META-INF/services files

Setting up your IDE
Create a Plugin Project
Configure the Project
Configure Tomcat

Packaging the Plugin
Debugging

Overview

While it's possible to develop a Yellowfin plugin using a text editor and Java command line tools, it would become frustrating if you were developing
anything more complicated than a simple Hello World plugin. This guide provides essential tips and steps to help developers set up their IDE to help them
code Yellowfin supported plugins, widgets, advanced functions, and more.

Tools to develop and debug your plugins

To develop and debug your plugins, you will need some tools and files.

Java 8 JDK (or higher) on your development system;
a Yellowfin install;
a project that outputs to your Yellowfin folder; and,
a META-INF/services file.

The steps below will help you locate and create each of these.

Install Java 8 JDK (or higher) on your development system

You can download Java 8 JDK here:

https://www.oracle.com/au/java/technologies/javase/javase-jdk8-downloads.html

Install Yellowfin for development work

Make sure you have a Yellowfin Install that is compatible with the Yellowfin plugin you wish to develop. This installation must have been started at least
once so the WAR file can be extracted into <Yellowfin Install directory>/appserver/webapps/ROOT/

We recommend you use the most recent version of Yellowfin, .available here

Create a project that outputs to your Yellowfin folder

You will need to create a project that outputs it’s compiled classes to <Yellowfin Install directory>/appserver/webapps/ROOT/classes

You can follow the to do this in Eclipse.steps below

Create a META-INF/services files

A META-INF/services file can be used to tell Yellowfin to load certain Plugins when it is starting up.

Create a file having the fully-qualified name of the plugin interface, in the services directory.
To create an Analytic Function, we recommend creating a file:, com.hof.mi.interfaces.AnalyticalFunction
Store the file in the folder, META-INF/services

Store the file in the folder:

https://www.oracle.com/au/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/au/java/technologies/javase/javase-jdk8-downloads.html

1.
2.
3.
4.

1.
a.
b.

You're now ready to set up your IDE.

top

Setting up your IDE

Here's a step-by-step tutorial to help you set up your development environment. We've used Tomcat as an example, which is Yellowfin's preferred IDE;
however, you should be able to loosely follow the instructions below for your preferred IDE.

Download and set up Eclipse for EE developers.
Install the , if it isn't already bundled with the installation.Tomcat plugin
Install the version of Yellowfin to be used for development. We suggest getting the latest version for increased productivity.Note:
Start up Yellowfin to extract the WAR file.

Create a Plugin Project

These steps will help you to create a new project for your Java plugin.

On starting Eclipse, create a new Java project.
Enter the project name and ensure you select a JRE compatible with your version of Yellowfin.
Click and change the default output folder to Next .<project-name>/ROOT/WEB-INF/classes

https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=37060792
https://marketplace.eclipse.org/content/eclipse-tomcat-plugin

1.

b.

c.
2.

a.

b.

Click .Finish
Import files from the installed Yellowfin instance:

Right-click on the project and select .Import

2.

b.

c.

d.

Select and click File System .Next

Navigate to in the Yellowfin install directory. Select and click .appserver/webapps/ROOT ROOT OK

Select everything under and in the section, select the ROOT Advanced checkbox.Create links in workspace

2.

d.

e.

1.

Click . Files from the installed Yellowfin will be linked to this project.Finish

top

Configure the Project

Follow these steps to configure your project.

Right-click on the project and select > from the menu. Then select the tab. Build Path Configure Build Path Libraries

https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=37060792

1.

2.

3.
4.

Click the button and type " " into the search bar. From the results, select and from your plugin project. Add JARs i4 i4-core.jar i4-mi.jar

Click to save this and again in the build path config window.OK OK
Under the folder, create a new folder and call it WEB-INF/src . Create a new folder called within this one.META-INF services

4.

5.

a.

6.

Depending on which plugin is being developed, create a file with the fully qualified name of the plugin interface in the directory. See the services
table below for all available plugin options:

Yellowin
Plugin

Interface Description

Transformation
Step

com.hof.mi.etl.step.ETLStep A step which may be used in the Data Transformation module.

Advanced
Function

com.hof.mi.interfaces.AnalyticalFunction Advanced functions used in Reports.

Data Type
Converter

com.hof.mi.interfaces.Converter Conversion of data types, done at the View Level and in the Data
Transformation module.

Custom
Formatter

com.hof.mi.interfaces.CustomFormatter Custom formatting used in Reports.

Data Profiler com.hof.mi.interfaces.
DataSuggestionPlugin

Profile data for a field. Contains functionality to determine whether the
implemented suggestion is applicable.

Third-Party
Connector

com.hof.mi.thirdparty.interfaces.
AbstractDataSource

Connectors to create connections to external API data sources.

Canvas Widget com.hof.mi.widgetcanvas.interfaces.
CanvasObjectTemplate

Custom widgets used in canvases in the Dashboard, Storyboard and Report
Design modules.

Source
Platform

com.hof.sources.SourcePlatform Define source types, such as JDBC, JNDI, OLAP etc.

For instance, if creating a Data Transformation Step, name your file ' '.com.hof.mi.etl.step.ETLStep

Create the plugin class by implementing one of the interfaces given above. The fully qualified classname should be added to the services file
corresponding to the interface.
So, for our Data Transformation Step example, add its fully qualified classname to .META-INF/services/com.hof.etl.step.ETLStep

You can add further transformation steps below this line, if required.

top

Configure Tomcat

The next step is to set up your Tomcat configuration.

https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=37060792

1.

2.

3.

4.

5.

Select and go to the section for Window > Preferences .Tomcat

Set to and to Tomcat home <Yellowfin Install directory>/appserver Contexts directory <Yellowfin Install directory>/appserver/conf/Catalina
/localhost.
Expand the section in the left-side menu and click on . Add the plugin project to Tomcat's classpath.Tomcat Advanced

Adjust JVM Settings, if necessary (through the option on the left side). You could use this to increase the memory available for JVM Settings Tip:
Tomcat.
Select (in the left side menu) and add the plugin project.Source Path

5.

6.
7.

8.

Click to save.OK
Start up Tomcat from Eclipse using the buttons in the toolbar.

The plugin will be now be available in Yellowfin.

Changes to code get reflected instantly, except when:

a method's signature is changed,
new methods/members are are added to the class,

1.
2.

3.

top

Packaging the Plugin

Once you've created your plugin, you will need to package it will all of its dependencies. The file extension should be in a specific file format that is
supported in Yellowfin.

Right-click on the project and select .Export > JAR file
Select only the package(s) to be exported and nothing else.

If the project has dependent JARs, put all of them and the Plugin JAR into one directory, zip into one archive, and give it the extension " ".yfp

top

Debugging

Debugging is easy as the Eclipse Tomcat plugin starts Tomcat in the debug mode. Simply add breakpoints in code and ensure they are active.

new classes are added to the plugin package.

In these cases, Tomcat must be restarted to apply changes.

https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=37060792
https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=37060792

	Plugin Development Basics

