
Logs and Logging
How is logging handled?

Log file location
Appenders and loggers
Enable RepositoryErrorAppender

Yellowfin 9.4 and later
Yellowfin 9.0–9.3

Edit the sourcelog appender
Yellowfin 9.4 and later
Yellowfin 9.0–9.3

Section navigation
Current topic - Deploy Yellowfin
Install on Premises
Install in the Cloud
Install in a container
Deploy Yellowfin
Advanced Deployments

How is logging handled?

The Yellowfin & Tomcat log files are extremely useful when troubleshooting issues, or just to find out how things are currently running.

The list of log files (with default options) are listed below:

Log Name Directory
Path

Description

YellowfinInstallLog-
YYYYMMDD.log

(where YYYYMMDD is the
date of installation)

Directly in
Yellowfin
application folder

This is the installation log file. It logs information about all the chosen installation options, along with
any errors encountered during installation.

YellowfinPatchLog–
YYYYMMDD.log

(where YYYYMMDD is the
date the update was run)

 Directly in
Yellowfin
application
folder (if an
update has
been run)

This is the update installation log file. It logs update information (such as updating the database) and
will capture any errors encountered. A log file is created each time you run an update.

Yellowfin.log appserver>logs This is the Yellowfin application log file. It logs processes/tasks that are run in Yellowfin, such as
startup, running reports, exporting items, etc. It will also capture most application errors.

By default, this file will cycle once it reaches 1024KB , and will create up to nine files (eg, Yellowfin.
log.1, Yellowfin.log.2, and so on, with the most recent data always stored in Yellowfin.log and the
oldest in the filename with the largest number). The size and number of files can be adjusted if
required.

Additional information can be logged by enabling debug logging.

JDBC.log appserver>logs This is the Yellowfin configuration database log file. It logs details of the repository database startup
and any connection errors.

source.XXXXX.log

(Where XXXXX is the ID of
the data source)

appserver>logs These files contain connection information specific to data sources. Each data source has its own
ID, so for each data source, a respective log file exists.

Note that a log file for a deleted data source will remain until you manually remove it.

catalina.YYYY-MM-DD.log

(where YYYY-MM-DD is the
date Tomcat was started)

appserver>logs This is the Tomcat startup log file. It logs any errors encountered while starting the service.

yellowfin-stdout_YYYY-
MM-DD.log

(where 'yellowfin-' is the
name of the Windows
service and YYYY-MM-DD
is the date Yellowfin was
started)

appserver>logs Note: This file is ONLY present if you have installed Yellowfin as a Windows service.

This log file logs information that is usually visible in the console log (the black window that opens
when you start Yellowfin).

yellowfin-stderr_YYYY-MM-
DD.log

(where 'yellowfin-' is the
name of the Windows
service and YYYY-MM-DD
is the date Yellowfin was
started)

appserver>logs Note: This file is ONLY present if you have installed Yellowfin as a Windows service .

This log file captures the same errors as the log file, but without capturing any other stdout
processes.

commons-daemon.
.log_service.YYYY-MM-DD

(where YYYY-MM-DD is the
date Yellowfin was started)

appserver>logs Note: This file is ONLY present if you have installed Yellowfin as a Windows service.

This log file logs information relating to the actual Windows service start.

Catalina.out appserver>logs Note: This file is ONLY present if you have installed Yellowfin on a Mac (OS X)/Linux box and you're
using the 'Startup (background)' option to start Yellowfin. This log file is NOT created on a Mac/Linux
box if you are running Yellowfin via the ‘Startup (terminal)’ option because all info would be logged in
the console (as you would see on a Windows box).

This log file logs all information relating to the Yellowfin application process; it captures all errors and
processes.

Logs and Logging#top

Log files and containerized deployments
The logging method used in the container deployment examples on this wiki all leverage the default logging driver for their respective environment, which
by default for Docker and Kubernetes is the json-file logging driver. During Yellowfin container uptime, a logging driver writes logs to a JSON file on
the container’s host. When the container is removed, the logs are removed with it.

For deployments where you wish to view and retain Yellowfin container logs beyond their update — like a production deployment — we recommend
shipping the logs to a centralized logging platform using shipping agents that integrate with Docker/Kubernetes.

For more information about logging in Docker and Kubernetes, please refer to Docker Logging Best Practices and Kubernetes Logging Architecture.

Logs and Logging#top

Modifying log files
Log file location

You can modify what information is logged and how log files are treated — including file size, file management and pattern syntax — via the directory Yello
.wfin/appserver/webapps/ROOT/WEB-INF/

Look for one of the following files:

Yellowfin
release

Filename More info

Yellowfin 9.4
or later

log4j2.xml Logging has been upgraded to Log4j2 and works differently in Yellowfin 9.4 and beyond. See https://logging.apache.org
 for further details./log4j/2.x/index.html

Yellowfin 9.0–
9.3

log4j.
properties

Earlier versions of Yellowfin used Log4j logging, which has reached end of life. See fhttp://logging.apache.org/log4j/1.2/
or further details.

Appenders and loggers

Appenders and loggers work together to deliver log events to log files. An appender defines a pattern for each log line, the destination of the line (file, DB,
cloud etc.) and any associated configuration. A logger tells Yellowfin what to log and level of logging. A logger also maps Java class files to the appender
that the class should use to write its logs. A number of Log4j2 appenders and loggers already exist and are detailed on the page.log4j2 appenders

Before making any changes to the file, we recommend that you back up your existing file and place it in a different location.

If you wish to email these files, you may need to stop the Yellowfin service (especially on Windows) as it will either not allow you to send, or
send blank files.

https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=48991958#LogsandLogging-top
https://success.docker.com/article/logging-best-practices
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=48991958#LogsandLogging-top
https://logging.apache.org/log4j/2.x/index.html
https://logging.apache.org/log4j/2.x/index.html
http://logging.apache.org/log4j/1.2/
https://logging.apache.org/log4j/2.x/manual/appenders.html

1.
2.

3.

4.

1.

2.

3.

Enable RepositoryErrorAppender

RepositoryErrorAppender is a custom Log4j appender for saving error log messages to the Events table in the Yellowfin repository database.
Error messages having lesser severity such as INFO or DEBUG are not written. However, more severe error messages, such as ERROR or FATAL, are
written to the database.

By default, RespositoryErrorAppender is not used. If you wish to enable the appender, you must first add the appender and then associate it with the
logger category or root category within your log config file, which is described below.

Yellowfin 9.4 and later

To enable the appender in Yellowfin 9.4 or later, follow the steps below.

Open your file (see above for more information on its location)log4j2.xml
Find the element and add a new line:<Appenders>

<RepositoryErrorAppender name="repos"/>

Associate the appender with the logger level or root category in the <Loggers> element
In the example below, we've added the line with "repos" to Root: Root is the default logger; it has no parents and is therefore at the top of the
log4j2 logger hierarchy. It therefore logs all error messages from anywhere in Yellowfin's backend to the repository DB:

<Root level="INFO">
 <AppenderRef ref="applog"/>
 <AppenderRef ref="cons" />
 <AppenderRef ref="repos" />
</Root>

If you prefer, you can also associate the appender with an entire group of classes
In the example below, we've added the line with "repos" to the class group of com.hof.cluster, which logs all error events from Yellowfin's
clustering classes to the repository DB: this is irrespective of the level defined for this category because the code in this particular appender INFO
allows only ERROR or higher to be logged:

<Logger name="com.hof.cluster" level="INFO">
 <AppenderRef ref="repos" />
</Logger>

Yellowfin 9.0–9.3

To enable the appender in Yellowfin 9.0-9.3, follow the steps below.

Add the following line to the file (see above for more information on its location):log4j.properties

log4j.appender.repos=com.hof.adapter.RepositoryErrorAppender

Associate the appender with a logging category or the root category of the log4j.properties file
In the example below, we've added "repos" to the following line for rootCategory, so it logs all error messages from anywhere in Yellowfin's
backend to the repository DB:

log4j.rootCategory=INFO, cons, applog, repos

If you prefer, you can also associate the appender with an entire group of classes
In the example below, we've added the line with "repos" to the class group of com.hof.cluster, which logs all error events from Yellowfin's
clustering classes to the repository DB: this is irrespective of the INFO level defined for this category because the code in this particular appender
allows only ERROR or higher to be logged:

log4j.category.com.hof.cluster=INFO, repos

Edit the sourcelog appender

The sourcelog appender of Log4j logs messages about each source database in their own individual log files.
This appender creates a RollingFileAppender for each source and supports most properties that the RollingFileAppender supports.
The "file" parameter has a %s token, which is automatically replaced with the Yellowfin sourceId.

NOTE: this logger is intended for use by the Yellowfin DBConnectionPool. While the appender may be configured, there is little value in using the
appender for any other logger.

By default, the sourcelog appender is enabled.

Yellowfin 9.4 and later

If you wish to modify the sourcelog appender, it can be found in the element area of your file.<Appenders> log4j2.xml

<SourceLog name="sourcelog" fileName="C:/logs/source.%s.log" filePattern="C:/logs/source.%s.log.%i"
maxFileSize="1024KB" maxFiles="9">
<PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} %6p: %m%n" />
</SourceLog>

Yellowfin 9.0–9.3

If you wish to alter the sourcelog appender, look for the following lines in your file:log4j.properties

log4j.appender.sourcelog=com.hof.pool.SourceLogAppender
log4j.appender.sourcelog.File=C:/logs/source.%s.log
log4j.appender.sourcelog.MaxFileSize=1024KB
log4j.appender.sourcelog.MaxBackupIndex=9
log4j.appender.sourcelog.layout=org.apache.log4j.PatternLayout
log4j.appender.sourcelog.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %6p: %m%n

Logs and Logging#top

Section navigation

Current topic - Deploy Yellowfin

This page is part of the section of the wiki, which has these topics:Install And Deploy Yellowfin

Install on Premises

Logs and Logging

Installation Steps

Install in the Cloud

Install in the Cloud

Yellowfin for AWS
Yellowfin for Azure
Yellowfin for Google
Cloud Platform

Install in a
container

Install in a Container

Docker
Kubernetes
Upgrading Yellowfin
Container
Deployment

https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=48991958#LogsandLogging-top
https://wiki.yellowfinbi.com/display/yfcurrent/Install+And+Deploy+Yellowfin
https://wiki.yellowfinbi.com/display/yfcurrent/Installation+Steps
https://wiki.yellowfinbi.com/display/yfcurrent/Install+in+the+Cloud
https://wiki.yellowfinbi.com/display/yfcurrent/Yellowfin+for+AWS
https://wiki.yellowfinbi.com/display/yfcurrent/Yellowfin+for+Azure
https://wiki.yellowfinbi.com/display/yfcurrent/Yellowfin+for+Google+Cloud+Platform
https://wiki.yellowfinbi.com/display/yfcurrent/Yellowfin+for+Google+Cloud+Platform
https://wiki.yellowfinbi.com/display/yfcurrent/Install+in+a+Container
https://wiki.yellowfinbi.com/display/yfcurrent/Docker
https://wiki.yellowfinbi.com/display/yfcurrent/Kubernetes
https://wiki.yellowfinbi.com/display/yfcurrent/Upgrading+Yellowfin+Container+Deployment
https://wiki.yellowfinbi.com/display/yfcurrent/Upgrading+Yellowfin+Container+Deployment
https://wiki.yellowfinbi.com/display/yfcurrent/Upgrading+Yellowfin+Container+Deployment

Deploy Yellowfin

Deploy Yellowfin

Logs and Logging
Yellowfin Directory
Structure
User Welcome

Advanced
Deployments

Advanced Deployments

Clustering Guide
Yellowfin Server
Specification
Automate Yellowfin
Deployment on Linux
SAML Bridge
Standalone
Configuration Tools

top

https://wiki.yellowfinbi.com/display/yfcurrent/Deploy+Yellowfin
https://wiki.yellowfinbi.com/display/yfcurrent/Yellowfin+Directory+Structure
https://wiki.yellowfinbi.com/display/yfcurrent/Yellowfin+Directory+Structure
https://wiki.yellowfinbi.com/display/yfcurrent/User+Welcome
https://wiki.yellowfinbi.com/display/yfcurrent/Advanced+Deployments
https://wiki.yellowfinbi.com/display/yfcurrent/Clustering+Guide
https://wiki.yellowfinbi.com/display/yfcurrent/Yellowfin+Server+Specification
https://wiki.yellowfinbi.com/display/yfcurrent/Yellowfin+Server+Specification
https://wiki.yellowfinbi.com/display/yfcurrent/Automate+Yellowfin+Deployment+on+Linux
https://wiki.yellowfinbi.com/display/yfcurrent/Automate+Yellowfin+Deployment+on+Linux
https://wiki.yellowfinbi.com/display/yfcurrent/SAML+Bridge
https://wiki.yellowfinbi.com/display/yfcurrent/Standalone+Configuration+Tools
https://wiki.yellowfinbi.com/display/yfcurrent/Standalone+Configuration+Tools

	Logs and Logging

