
Logs and Logging

How is logging handled?
Log file location
Appenders and loggers
RepositoryErrorAppender

Use RepositoryErrorAppender — Yellowfin 8.0.8 and later
Use RepositoryErrorAppender — Yellowfin 8.0.1–8.0.7

The sourcelog appender
Locate/modify RepositoryErrorAppender configuration — Yellowfin 8.0.8 and later
Locate/modify RepositoryErrorAppender configuration — Yellowfin 8.0.1–8.0.7

How is logging handled?

The Yellowfin & Tomcat log files are extremely useful when troubleshooting issues, or just to find out how things are currently running.

The list of log files (with default options) are listed below:

Log Name Directory 
Path

Description

YellowfinInstallLog-
YYYYMMDD.log

(where YYYYMMDD is the 
date of installation)

Directly in 
Yellowfin 
application folder

This is the installation log file. It logs information about all the chosen installation options, along with 
any errors encountered during installation.

YellowfinPatchLog–
YYYYMMDD.log

(where YYYYMMDD is the 
date the update was run)

 Directly in 
Yellowfin 
application 
folder (if an 
update has 
been run)

This is the update installation log file. It logs update information (such as updating the database) and 
will capture any errors encountered. A log file is created each time you run an update.

Yellowfin.log appserver>logs This is the Yellowfin application log file. It logs processes/tasks that are run in Yellowfin, such as 
startup, running reports, exporting items, etc. It will also capture most application errors.

By default, this file will cycle once it reaches 1024KB , and will create up to nine files (eg, Yellowfin.
log.1, Yellowfin.log.2, and so on, with the most recent data always stored in Yellowfin.log and the 
oldest in the filename with the largest number). The size and number of files can be adjusted if 
required.

Additional information can be logged by enabling debug logging. 

JDBC.log appserver>logs This is the Yellowfin configuration database log file. It logs details of the repository database startup 
and any connection errors.

source.XXXXX.log

(Where XXXXX is the ID of 
the data source)

appserver>logs These files contain connection information specific to data sources. Each data source has its own 
ID, so for each data source, a respective log file exists.

Note that a log file for a deleted data source will remain until you manually remove it.

catalina.YYYY-MM-DD.log

(where YYYY-MM-DD is the 
date Tomcat was started)

appserver>logs This is the Tomcat startup log file. It logs any errors encountered while starting the service.

yellowfin-stdout_YYYY-
MM-DD.log

(where 'yellowfin-' is the 
name of the Windows 
service and YYYY-MM-DD 
is the date Yellowfin was 
started)

appserver>logs Note: This file is ONLY present if you have installed Yellowfin as a Windows service.

This log file logs information that is usually visible in the console log (the black window that opens 
when you start Yellowfin).

yellowfin-stderr_YYYY-MM-
DD.log

(where 'yellowfin-' is the 
name of the Windows 
service and YYYY-MM-DD 
is the date Yellowfin was 
started)

appserver>logs Note: This file is ONLY present if you have installed Yellowfin as a Windows service .

This log file captures the same errors as the  log file, but without capturing any other stdout
processes.



1.  
2.  

commons-daemon.
.log_service.YYYY-MM-DD

(where YYYY-MM-DD is the 
date Yellowfin was started)

appserver>logs Note: This file is ONLY present if you have installed Yellowfin as a Windows service.

This log file logs information relating to the actual Windows service start.

Catalina.out appserver>logs Note: This file is ONLY present if you have installed Yellowfin on a Mac (OS X)/Linux box and you're 
using the 'Startup (background)' option to start Yellowfin. This log file is NOT created on a Mac/Linux 
box if you are running Yellowfin via the ‘Startup (terminal)’ option because all info would be logged in 
the console (as you would see on a Windows box).

This log file logs all information relating to the Yellowfin application process; it captures all errors and 
processes.

Modifying log files
Log file location

You can modify what information is logged and how log files are treated — including file size, file management and pattern syntax — via the directory Yello
.wfin/appserver/webapps/ROOT/WEB-INF/

Look for one of the following files:

Yellowfin 
release 

Filename More info

Yellowfin 8.0.8 
or later

log4j2.xml Logging has been upgraded to Log4j2 and works differently in Yellowfin 8.0.8 and beyond. See https://logging.apache.
 for further details.org/log4j/2.x/index.html

Yellowfin 8.0.1–
8.0.7

log4j.
properties

Earlier versions of Yellowfin used Log4j logging, which has reached end of life. See   http://logging.apache.org/log4j/1.2/
for further details.

Appenders and loggers

Appenders and loggers work together to deliver log events to log files. An appender defines a pattern for each log line, the destination of the line (file, DB, 
cloud etc.) and any associated configuration. A logger tells Yellowfin what to log and level of logging. A logger also maps Java class files to the appender 
that the class should use to write its logs. A number of Log4j2 appenders and loggers already exist and are detailed on the   page.log4j2 appenders

RepositoryErrorAppender

RepositoryErrorAppender is a custom Log4j2 appender for saving error log messages to the Events table in the Yellowfin repository database.
Error messages having lesser severity such as INFO or DEBUG are not written. However, more severe error messages, such as ERROR or FATAL, are 
written to the database.

By default, RespositoryErrorAppender is not used.

Use RepositoryErrorAppender — Yellowfin 8.0.8 and later

To enable the appender:

Add the appender.
Associate the appender with the logger category or root category.

within your log4j2.xml file.

1. To add the appender, find the    element and add a new line:<Appenders>

Before making any changes to the file, we recommend that you back up your existing file and place it in a different location.

If you wish to email these files, you may need to stop the Yellowfin service (especially on Windows) as it will either not allow you to send, or 
send blank files.

https://logging.apache.org/log4j/2.x/index.html
https://logging.apache.org/log4j/2.x/index.html
http://logging.apache.org/log4j/1.2/
https://logging.apache.org/log4j/2.x/manual/appenders.html


1.  
2.  

<RepositoryErrorAppender name="repos"/> 

2. Associate the appender with the logger level or root category in the  element. <Loggers> In the example below, we've added the line with "repos" to 
Root. Root is the default logger. It has no parents and is therefore at the top of the log4j2 logger heirarchy. It therefore logs all error messages from 
anywhere in Yellowfin's backend to the repository DB.

<Root level="INFO">
    <AppenderRef ref="applog"/>
    <AppenderRef ref="cons" />
    <AppenderRef ref="repos" />
</Root> 

You can also associate the appender with an entire group of classes. In the example below, we've added the line with "repos" to the class group of com.
, which logs all error events from Yellowfin's clustering classes to the repository DB. hof.cluster This is irrespective of the  level defined for this INFO

category .because the code in this particular appender allows only ERROR or higher to be logged

<Logger name="com.hof.cluster" level="INFO">
    <AppenderRef ref="repos" />
</Logger>

Use RepositoryErrorAppender — Yellowfin 8.0.1–8.0.7

To enable the appender:

Add the appender.
Associate the appender with the logger category or root category.

within your log4j.properties file.

1. To add the appender, add the following line to the log4j.properties file:

log4j.appender.repos=com.hof.adapter.RepositoryErrorAppender

2. Associate the appender with a logging category or the root category of the log4j.properties file. In the example below, we've added "repos" to the 
following line  for rootCategory, so it logs all error messages from anywhere in Yellowfin's backend to the repository DB.

log4j.rootCategory=INFO, cons, applog, repos

You can also associate the appender with an entire group of classes. In the example below, we've added the line with "repos" to the class group of com.
, which logs all error events from Yellowfin's clustering classes to the repository DB. This is irrespective of the  level defined for this hof.cluster INFO

category .because the code in this particular appender allows only ERROR or higher to be logged

log4j.category.com.hof.cluster=INFO, repos 

The sourcelog appender

sourcelog is a Log4j appender that logs messages about each source database in their own individual log files.
This appender creates a RollingFileAppender for each source and supports most properties that the RollingFileAppender supports.
The "file" parameter has a %s token, which is automatically replaced with the Yellowfin sourceId.

NOTE: this logger is intended for use by the Yellowfin DBConnectionPool. While the appender may be configured, there is little value in using the 
appender for any other logger.

By default, the sourcelog appender is enabled.

Locate/modify RepositoryErrorAppender configuration — Yellowfin 8.0.8 and later

If you wish to modify the sourcelog appender, it can be found in the   element area of your log4j2.xml file.<Appenders>



<SourceLog name="sourcelog" fileName="C:/logs/source.%s.log" filePattern="C:/logs/source.%s.log.%i" 
maxFileSize="1024KB" maxFiles="9">
<PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} %6p: %m%n" />
</SourceLog>

Locate/modify RepositoryErrorAppender configuration — Yellowfin 8.0.1–8.0.7

If you wish to alter the sourcelog appender, look for the following lines in your log4j.properties file:

log4j.appender.sourcelog=com.hof.pool.SourceLogAppender
log4j.appender.sourcelog.File=C:/logs/source.%s.log
log4j.appender.sourcelog.MaxFileSize=1024KB
log4j.appender.sourcelog.MaxBackupIndex=9
log4j.appender.sourcelog.layout=org.apache.log4j.PatternLayout
log4j.appender.sourcelog.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %6p: %m%n


	Logs and Logging

