
Back-end implementation of a Code Widget

Implement AbstractCodeTemplate

The AbstractCodeTemplate implementation handles code widgets at the back end. This is a Java class which code widget plugins should extend. Yellowfin
uses the implementation of this class to determine how a code widget will be available for the Yellowfin instance. There are a number of events and back-
end requests that can be made within this widget.

Required methods

The following methods must be overridden in the AbstractCodeTemplate implementation.

Method name Description Example

String
getTemplateTitle()

This is the name of your widget. It will be the name displayed to users when the widget is
available in the canvas widget panels.

public String getTemplateTitle()
{

 return “My Code Widget”;

}

void
setupResources()

This is the method to define any front-end resources your widget may require. This will be called
when the class is initialised. Whatever resources are added here will tell Yellowfin which files the
front-end is allowed to load. If you attempt to load a file from the front end that is not defined
here, it will be rejected.

Use the addResource(Resource); function to add your resources. See for information Resource
about Resource objects

Any resource you add here will be relative to the AbstractCodeTemplate implementation.

Any resources defined by this
function are relative to the
location of the
AbstractCodeTemplate
location.

So if, for example, our Java
package is:

my.code.widget

my_widget.js could be located
in the my.code.widget.resource
package:

my.code.widget
 -MyCodeWidget.java
my.code.widget.resource
 -my_widget.js

We can define my_widget.js us
ing the following

void setupResources() {

 addResource(new Resource
(“resource/my_widget.js”, “text
/javascript”));

}

String
getMainJavascript
Path()

This defines the entry point for your code widget. This will be the first file loaded by Yellowfin,
and then called. The file you choose must return a constructor. See the JavaScript section for
details.

String getMainJavascriptPath()
{

 return “my_widget.js”;

}

https://wiki.yellowfinbi.com/display/yfcurrent/The+Resource+Object

CanvasWidgetPan
el getPanel(Canva
sWidgetPanelInfo
panelInfo)

Used to define the Widget Properties Panel allowing you to define any custom options you wish
for your widget. If null is returned from this method, the default widget properties panel will be
used.

CanvasWidgetPanel getPanel
(CanvasWidgetPanelInfo
panelInfo) {

 return new
MyCodeWidgetPanel
(panelInfo);

}

//To use the default canvas
panel

CanvasWidgetPanel getPanel
(CanvasWidgetPanelInfo
panelInfo) {

 return null;

}

See the Widget Properties
Panel section for details

Next step

Once the back-end code is complete, it's time to .write the front-end code

To further assist you during code widget development, visit the for samples, API links and detailed descriptions.code widget reference page

Back-end implementation of a Code Widget#top

https://wiki.yellowfinbi.com/display/yfcurrent/Front-end+Implementation+of+a+Code+Widget
https://wiki.yellowfinbi.com/display/yfcurrent/Further+References+for+Code+Widgets
https://wiki.yellowfinbi.com/pages/viewpage.action?pageId=48991804#BackendimplementationofaCodeWidget-top

	Back-end implementation of a Code Widget

