
Advanced Use

Overview
Server Information

Example
Loading a Report

Examples
Loading Report Filters

Examples
Loading a Dashboard

Examples
Loading Dashboard Filters

Examples

Overview

top
If you want to have more control over the loading of content, call reports or dashboards on demand, or set display options dynamically (based on user
input), you can call the API directly from your own script.

The Javascript API must be included before any API calls can be made:

<script src="http://localhost/JsAPI" type="text/javascript"></script>

A specific version of the API may be requested using the parameter:version

<script src="http://localhost/JsAPI?version=2.1" type="text/javascript"></script>

If the browser is unable to load the API, any calls to load reports or dashboards will fail. If you wish to detect whether the API has loaded successfully, you
should check the variable is available:window.yellowfin

<script src="http://localhost/JsAPI" type="text/javascript"></script>
<script type="text/javascript">
if (!window.yellowfin) {
 alert('Error loading API');
}
</script>

Server Information

top
After loading the API, some server information is made available:

 Description

yellowfin.apiVersion The version of the API being used by the server.

yellowfin.baseURL The base URL used to connect to the API on the server

yellowfin.serverInfo.releaseVersion The release version of Yellowfin running on the server (eg. "6.1")

yellowfin.serverInfo.buildVersion The build version of Yellowfin running on the server (eg. "20120601")

yellowfin.serverInfo.javaVersion The java version installed on the server

yellowfin.serverInfo.operatingSystem The Operating System running on the server

yellowfin.serverInfo.operatingSystemArch The Operating System architecture on the server

yellowfin.serverInfo.operatingSystemVersion The Operating System version on the server

yellowfin.serverInfo.schemaVersion The schema version of the Yellowfin configuration database

Example

<script src="http://localhost/JsAPI" type="text/javascript"></script>
<script type="text/javascript">
if (window.yellowfin) {
 alert('Yellowfin API loaded. Version: ' + yellowfin.apiVersion);
}
</script>

Loading a Report

top
A report is loaded by calling the function:yellowfin.loadReport

yellowfin.loadReport(options);

Options are passed to the function as a Javascript object. These include a report identifier for the report you are loading, the elementId of the HTML
element in which to load the report (or the element itself), and other options that alter the way the report is displayed. The available options are:

Option Description

reportUUID Either , or must be present.reportUUID reportId wsName
The unique ID identifying the dashboard to load.

reportId Either , or must be present.reportUUID reportId wsName
The numeric reportId identifying the report to load. It is recommended to use the parameter instead.reportUUID

wsName Either , or must be present.reportUUID reportId wsName
The Web Service name identifying the report to load. It is recommended to use the parameter instead.reportUUID

elementId Either or must be present.elementId element
The id of the html element in which to load the report.

element Either or must be present.elementId element
The html element in which to load the report.

showTitle Default: true
Set to to omit the title bar at the top of the report. All interactive buttons included in the title bar will also be omitted.false

showInfo Default: true
Set to to omit the Info button in the title bar.false

showFilters Default: true
Set to to omit the Filters button in the title bar. Any user-prompt filters will not be displayed.false

showSectio
ns

Default: true
Set to to omit the Sections button in the title bar (for reports with tabbed or multi-page sections).false

showSeries Default: true
Set to to omit the Series button in the title bar (for reports with the series selection option).false

showPageLi
nks

Default: true
Set to to omit the previous page/next page button in the title bar (for reports with multiple pages).false

showExport Default: true
Set to to omit the Export button in the title bar.false

height Default: automatically detected from the dimensions of the enclosing element
Set this to a numeric value to override the report height.

width Default: automatically detected from the dimensions of the enclosing element
Set this to a numeric value to override the report width.

display Default: chart
Set to to display the report initially as a table.table
Set to to display the report initially as a chart.chart
This is ignored for reports that do not have both table and chart available.

fitTableWi
dth

Default: true
Set to to attempt to scale the report to the width of the enclosing element.true

canChangeD
isplay

Default: true
Set to to omit the buttons that allow the user to switch between chart and table display.false

filters Set to an object containing filter values to pass to the report.

username Set this along with the parameter to authenticate as a particular user when loading the report. This avoids the need for password
users to enter their login details before viewing restricted reports.

password Set this along with the parameter to authenticate as a particular user when loading the report.username

Examples

This example loads a report into an element specified by its universal id, setting some initial display options:

var options = {};
options.reportUUID = 'e5e5aaf3-c3b8-4f9b-8280-e21e4d848e63';
options.elementId = 'myReport';
options.showFilters = 'false';
options.showSeries = 'false';
options.display = 'chart';
options.fitTableWidth = 'false';
yellowfin.loadReport(options);

This example does the same thing with an anonymous options object:

yellowfin.loadReport({
 reportUUID: 'e5e5aaf3-c3b8-4f9b-8280-e21e4d848e63',
 elementId: 'myReport',
 showFilters: 'false',
 showSeries: 'false',
 display: 'chart',
 fitTableWidth: 'false'
});

This example passes the element directly rather than just its id:

yellowfin.loadReport({
 reportUUID: 'e5e5aaf3-c3b8-4f9b-8280-e21e4d848e63',
 element: document.getElementById('myReport')
});

Loading Report Filters

top
Filters used by a report can be loaded by calling the function. To use this function, load the reports sub-yellowfin.reports.loadReportFilters
API into your page along with the main API:

<script src="http://localhost/JsAPI" type="text/javascript"></script>
<script src="http://localhost/JsAPI?api=reports" type="text/javascript"></script>

Then call the function:loadReportFilters

yellowfin.reports.loadReportFilters(reportId, callback, arg);

The first argument is the unique identifier for the report, which may either be a or a . We recommend using the reportUUID reportId reportUUID
where possible. The second argument is a callback function that will be called by the API when the filters for the report have been loaded. The first
argument to the callback function will be the list of filters in the report. The second argument to the callback function will be the third argument supplied to
the function (if specified).loadReportFilters

The filters object returned as the first argument to the callback function is an array containing any filters used in the report. Each element in the array is an
object containing information about that filter. These filter objects contain the properties:

Property Description

filterUUID A unique identifier for the filter.

filterId A numeric identifier for the filter.

nativeType The native data type of the filter.

description The description of the filter.

operator The operator used with the filter.

display The display style used by the filter.

dependencies Set to true if other filters in the report are dependent on this one.

list Set to true if the filter is a list style (allows multiple values).

between Set to true if the filter is a between style (requires a start and end value).

listValues If the filter is displayed as a drop-down list, this property contains a list of available options.

Examples

This example loads the report filters and displayed them to the user:

function filterCallback(filters) {

 for (var i = 0; i < filters.length; i++) {
 alert('Filter ' + filters[i].description + ' (' +
 filters[i].filterUUID + '), display style: ' +
 filters[i].display);
 }

}

yellowfin.reports.loadReportFilters(
 'e5e5aaf3-c3b8-4f9b-8280-e21e4d848e63', filterCallback);

This function can be used to load the available filters, and then pass them back to the function to set up initial filter values for the report when loadReport
it is loaded into the page. For example:

function filterCallback(filters) {

 var filterValues = {};

 for (var i = 0; i < filters.length; i++) {

 if (filters[i].description == 'Country') {

 filterValues[filters[i].filterUUID] = 'Australia';

 } else if (filters[i].description == 'Start Date') {

 filterValues[filters[i].filterUUID] = '2011-01-01';

 } else if (filters[i].description == 'Invoiced Amount') {

 filterValues[filters[i].filterUUID] = 6400;

 }

 }

 // set up other options to load the report
 var options = {};
 options.reportUUID = 'e5e5aaf3-c3b8-4f9b-8280-e21e4d848e63';
 options.elementId = 'myReport';
 // add the filter values
 options.filters = filterValues;

 // load the report
 yellowfin.loadReport(options);

}

yellowfin.reports.loadReportFilters(
 'e5e5aaf3-c3b8-4f9b-8280-e21e4d848e63', filterCallback);

Filter values passed to the function should be specified as simple values as above. If the filter is a list style, multiple values can be set using loadReport
an array:

filterValues[filterUUID] = ['Australia', 'China', 'Italy'];

If the filter is a between style, the start and end values should be set using an array:

filterValues[filterUUID] = [500, 600];

The element passed to the function should contain values keyed either by or . We recommend options.filters loadReport filterUUID filterId
using where possible.filterUUID

Loading a Dashboard

top
A dashboard is loaded by calling the function:yellowfin.loadDash

yellowfin.loadDash(options);

Options are passed to the function as a Javascript object. These include an identifier for the dashboard you are loading, the elementId of the HTML
element in which to load the dashboard (or the element itself), and other options that alter the way the dashboard is displayed. The available options are:

Option Description

dashUUID Must be present.
The unique identifier for the dashboard to load.

element
Id

Either or must be present.elementId element
The id of the html element in which to load the dashboard.

element Either or must be present.elementId element
The html element in which to load the dashboard.

showTit
le

Default: true
Set to to omit the title bar at the top of the dashboard. All interactive buttons included in the title bar will also be omitted.false

showInfo Default: true
Set to to omit the Info button in the title bar.false

showFil
ters

Default: true
Set to to omit the Filters button in the title bar. Any analytical filters will not be displayed.false

showExp
ort

Default: true
Set to to omit the Export button in the title bar.false

height Default: automatically set from the dimensions of the reports in the dashboard.
Set this to a numeric value to override the dashboard height. If the reports in the dashboard require more space, a vertical scrollbar will be
added.

width Default: automatically set from the logged-in user’s preferences or the system configuration setting
Set this to a numeric value to override the dashboard width.
Set this to to use the full width of the enclosing element.auto

filters Set to an object containing filter values to pass to the dashboard.

username Set this along with the parameter to authenticate as a particular user when loading the dashboard. This avoids the need for password
users to enter their login details before viewing restricted dashboards.

password Set this along with the parameter to authenticate as a particular user when loading the dashboard.username

Examples

This example loads a dashboard into an element specified by its id, setting some initial display options.

var options = {};
options.dashUUID = '3b0b6c9a-9dfb-41f0-b85a-eb17bb8aeeb9';
options.elementId = 'myDash';
options.showFilters = 'false';
options.showExport = 'false';
yellowfin.loadDash(options);

This example does the same thing with an anonymous options object:

yellowfin.loadDash({
 dashUUID: '3b0b6c9a-9dfb-41f0-b85a-eb17bb8aeeb9',
 elementId: 'myDash',
 showFilters: 'false',
 showExport: 'false'
});

This example passes the element directly, rather than just its id:

yellowfin.loadDash({
 dashUUID: '3b0b6c9a-9dfb-41f0-b85a-eb17bb8aeeb9',
 element: document.getElementById('myDash')
});

Loading Dashboard Filters

top
Filters used by a dashboard can be loaded by calling the function. To use this function, load the dashboard sub-yellowfin.dash.loadDashFilters
API into your page along with the main API:

<script src="http://localhost/JsAPI" type="text/javascript"></script>
<script src="http://localhost/JsAPI?api=dash" type="text/javascript"></script>

Then call the function:loadDashFilters

yellowfin.dash.loadDashFilters(dashUUID, callback, arg);

The first argument is the unique identifier for the dashboard. The second is a callback function that will be called by the API when the filters for the
dashboard have been loaded. The first argument to the callback function will be the list of filters in the dashboard. The second argument to the callback
function will be the third argument supplied to the function (if specified).loadReportFilters

The filters object returned as the first argument to the callback function is an array containing any analytical filters used in the dashboard, as well as filter
group separators. Each element in the array is an object containing information about that filter or filter group. These objects contain the properties:

Properties Description

key A unique key for this filter or filter group.

type Set to if this object represents a filter group. Other values indicate a type of analytic filter.FILTERGROUP

description The description of the filter or filter group.

groupId For filter groups: a numeric identifier for the group.

state For filter groups: set to if the group is currently opened.OPEN

display For filters: the display style used by the filter.

dependencies For filters: set to if other filters in the dashboard are dependent on this one.true

list For filters: set to if the filter is a list style (allows multiple values).true

between For filters: set to if the filter is a between style (requires a start and end value).true

listValues For filters: if the filter is displayed as a drop-down list, this property contains a list of available options.

Examples

This example loads the dashboard filters and displays them to the user:

function filterCallback(filters) {

 for (var i = 0; i < filters.length; i++) {
 alert('Filter ' + filters[i].description + ' (' +
 filters[i].key + '), display style: ' +
 filters[i].display);
 }

}

yellowfin.reports.loadReportFilters(1234, filterCallback);

This function can be used to load the available filters, and then pass them back to the function to set up initial filter values for the dashboard loadDash
when it is loaded into the page:

function filterCallback(filters) {

 var filterValues = {};

 for (var i = 0; i < filters.length; i++) {

 if (filters[i].description == 'Country') {

 filterValues[filters[i].key] = 'Australia';

 } else if (filters[i].description == 'Start Date') {

 filterValues[filters[i].key] = '2011-01-01';

 } else if (filters[i].description == 'Invoiced Amount') {

 filterValues[filters[i].key] = 6400;

 }

 }

 // set up other options to load the dashboard
 var options = {};
 options.dashUUID = '3b0b6c9a-9dfb-41f0-b85a-eb17bb8aeeb9';
 options.elementId = 'myDash';
 // add the filter values
 options.filters = filterValues;

 // load the dashboard
 yellowfin.loadDash(options);

}

yellowfin.dash.loadDashFilters('3b0b6c9a-9dfb-41f0-b85a-eb17bb8aeeb9', filterCallback);

Filter values passed to the function should be specified as simple values as above. If the filter is a list style, multiple values can be set using an loadDash
array:

filterValues[key] = ['Australia', 'China', 'Italy'];

If the filter is a between style, the start and end values should be set using an array:

filterValues[key] = [500, 600];

The element passed to the function should contain values keyed by the returned from the options.filters loadDash keys loadDashFilters
function.

top

	Advanced Use

